Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Int Immunopharmacol ; 131: 111907, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38520786

RESUMO

AIM: Through network pharmacology, molecular docking, molecular dynamics in combination with experimentation, we explored the mechanism whereby 1-ethoxycarbonyl-beta-carboline (EBC) regulates the M2 polarization of tumor-associated macrophages. METHODS: Network pharmacology was adopted for analyzing the targets and signaling pathways related to the M2 polarization of EBC-macrophages, small molecular-protein docking was employed to analyze the possibility of EBC bonding to related protein, and molecular dynamics was introduced to analyze the binding energy between EBC and HDAC2. The M2 polarization of RAW264.7 macrophages was triggered in vitro by IL-4. After EBC intervention, the expressions of M1/M2 polarization-related cytokines were detected, and the mechanism of EBC action was explored in HDAC2-knockout RAW264.7 macrophages. A tumor-bearing mouse model was established in vitro to find the impact of EBC on tumor-associated M2 macrophages. RESULTS: As revealed by the network pharmacology, molecular docking and molecular dynamics analyses, EBC was associated with 51 proteins, including HDAC2, NF-κB and HDAC4. Molecular docking and dynamics analyses suggested that HDAC2 was the main target of EBC. In vitro experiments discovered that EBC could hinder the M2 polarization of RAW264.7 macrophages, which exerted insignificant effect on the M1-associated cytokines, but could lower the levels of M2-associated cytokines. After knocking out HDAC2, EBC could not further inhibit the M2 polarization of macrophages. At the mouse level, EBC could hinder the tumor growth and the tissue levels of M2 macrophages, whose effect was associated with HDAC2. CONCLUSION: Our study combining multiple methods finds that EBC inhibits the HDAC2-mediated M2 polarization of macrophages, thereby playing an anti-tumor role.


Assuntos
Farmacologia em Rede , Macrófagos Associados a Tumor , Animais , Camundongos , Simulação de Acoplamento Molecular , Macrófagos Associados a Tumor/metabolismo , Citocinas/metabolismo , Carbolinas/farmacologia , Carbolinas/uso terapêutico
2.
Eur J Med Chem ; 269: 116288, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38460270

RESUMO

Coactivator-associated arginine methyltransferase 1 (CARM1) plays an important role in cell proliferation and gene expression, and is highly expressed in a variety of tumor tissues. Guided by our previous reported structure of DCPR049_12, we focused on designing and evaluating selective CARM1 inhibitors, resulting in the identification of compound 11f as a promising lead candidate. Compound 11f displayed potent inhibition of CARM1 (IC50 = 9 nM). Comprehensive evaluations, including in vitro metabolic stability assessments, molecular modelling, cellular studies, and in vivo anti-tumor studies, confirmed that it induced cancer cell apoptosis and specifically inhibited CARM1's methylation function. Notably, compound 11f displayed significant anti-proliferative effects on colorectal cancer cell lines, showcasing its potential for targeted therapies against CARM1-related diseases. This study provides valuable insights for the future development of specific and effective CARM1 inhibitors.


Assuntos
Neoplasias Colorretais , Proteína-Arginina N-Metiltransferases , Humanos , Linhagem Celular , Apoptose , Neoplasias Colorretais/tratamento farmacológico
3.
Aging (Albany NY) ; 16(2): 1390-1398, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38244580

RESUMO

AIM: We focused on investigating the role and mechanism of ganodermanontriol (GAN) in regulating the M2 polarization of tumor-associated macrophages in the gastric cancer microenvironment. METHODS: M2 polarization of RAW264.7 macrophages was induced by IL-4 or co-culture with MFC, and the expression levels of M1 macrophage markers (TNF-α, IFN-γ, IL-1ß) and M2 macrophage markers (IL-10, TGF-ß, Arg-1) were detected by enzyme-linked immunosorbed assay (ELISA). The protein expression was assayed by Western-Blotting. For in vitro experiments, a tumor-bearing mouse model was established, with which the CD206 level was detected by histochemistry, and the binding mode between GAN and STAT6 was simulated through molecular dynamics. RESULTS: Both IL-4 and MFC could induce the M2 polarization of macrophages. GAN could inhibit such polarization, which produced unobvious effects on M1 markers, but could suppress the levels of M2 markers. GAN could inhibit the phosphorylated expression of STAT6, and M2 macrophages treated by it had a weakened ability to promote malignant behavior of MFC. According to the results of in vitro experiments, GAN could inhibit tumor growth, suppress the tissue infiltration of CD206 cells, and inhibit the phosphorylated expression of STAT6. CONCLUSION: Our results show that GAN can inhibit the M2 macrophage polarization in gastric cancer microenvironment, whose mechanism of action is associated with the regulation of STAT6 phosphorylation.


Assuntos
Lanosterol/análogos & derivados , Neoplasias Gástricas , Macrófagos Associados a Tumor , Camundongos , Animais , Neoplasias Gástricas/patologia , Interleucina-4/metabolismo , Macrófagos/metabolismo , Microambiente Tumoral
4.
Int Immunopharmacol ; 126: 111307, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38035408

RESUMO

OBJECTIVE: To investigate the long-term effects of polystyrene (PS) exposure on acute liver injury. METHODS: The carbon tetrachloride-induced acute injury mouse model was subjected to long-term PS exposure. Pyroptosis was inhibited by knocking out Gsdmd in mice or treating with the Gsdmd inhibitor necrosulfonamide (NSA) to evaluate the effect of PS on liver injury. Kupffer cells were used as a cellular model to examine the effects of PS on cell pyroptosis, lactate dehydrogenase release rate, structural integrity (propidium iodide staining), and inflammatory factor levels. RESULTS: In mice, PS exposure exacerbated acute liver injury, which was mitigated upon Gsdmd knockout (KO) or NSA treatment along with the downregulation of tissue inflammatory response. In vitro studies demonstrated that PS promoted Kupffer cell pyroptosis, which was suppressed upon Gsdmd KO or NSA treatment along with the alleviation of inflammation. CONCLUSION: These results suggest that long-term PS exposure exacerbates acute liver injury by promoting Kupffer cell pyroptosis, which is one of the hepatotoxic mechanisms of PS.


Assuntos
Células de Kupffer , Poliestirenos , Camundongos , Animais , Poliestirenos/farmacologia , Microplásticos/farmacologia , Plásticos/farmacologia , Piroptose , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fígado
5.
Sci Adv ; 9(45): eadg8138, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37939174

RESUMO

Meniscus is a complex and crucial fibrocartilaginous tissue within the knee joint. Meniscal regeneration remains to be a scientific and translational challenge. We clarified that mesenchymal stem cells (MSCs) participated in meniscal maturation and regeneration using MSC-tracing transgenic mice model. Here, inspired by meniscal natural maturational and regenerative process, we developed an effective and translational strategy to facilitate meniscal regeneration by three-dimensionally printing biomimetic meniscal scaffold combining autologous synovium transplant, which contained abundant intrinsic MSCs. We verified that this facilitated anisotropic meniscus-like tissue regeneration and protected cartilage from degeneration in large animal model. Mechanistically, the biomechanics and matrix stiffness up-regulated Piezo1 expression, facilitating concerted activation of calcineurin and NFATc1, further activated YAP-pSmad2/3-SOX9 axis, and consequently facilitated fibrochondrogenesis of MSCs during meniscal regeneration. In addition, Piezo1 induced by biomechanics and matrix stiffness up-regulated collagen cross-link enzyme expression, which catalyzed collagen cross-link and thereby enhanced mechanical properties of regenerated tissue.


Assuntos
Menisco , Células-Tronco Mesenquimais , Animais , Camundongos , Menisco/metabolismo , Fibrocartilagem/metabolismo , Células-Tronco Mesenquimais/metabolismo , Colágeno/metabolismo , Modelos Animais , Camundongos Transgênicos , Canais Iônicos/metabolismo
6.
Sci Bull (Beijing) ; 68(17): 1904-1917, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37558534

RESUMO

Osteochondral defects pose a great challenge and a satisfactory strategy for their repair has yet to be identified. In particular, poor repair could result in the generation of fibrous cartilage and subchondral bone, causing the degeneration of osteochondral tissue and eventually leading to repair failure. Herein, taking inspiration from the chemical elements inherent in the natural extracellular matrix (ECM), we proposed a novel ECM-mimicking scaffold composed of natural polysaccharides and polypeptides for osteochondral repair. By meticulously modifying natural biopolymers to form reversible guest-host and rigid covalent networks, the scaffold not only exhibited outstanding biocompatibility, cell adaptability, and biodegradability, but also had excellent mechanical properties that can cater to the environment of osteochondral tissue. Additionally, benefiting from the drug-loading group, chondrogenic and osteogenic drugs could be precisely integrated into the specific zone of the scaffold, providing a tissue-specific microenvironment to facilitate bone and cartilage differentiation. In rabbit osteochondral defects, the ECM-inspired scaffold not only showed a strong capacity to promote hyaline cartilage formation with typical lacuna structure, sufficient mechanical strength, good elasticity, and cartilage-specific ECM deposition, but also accelerated the regeneration of quality subchondral bone with high bone mineralization density. Furthermore, the new cartilage and subchondral bone were heterogeneous, a trait that is typical of the natural landscape, reflecting the gradual progression from cartilage to subchondral bone. These results suggest the potential value of this bioinspired osteochondral scaffold for clinical applications.


Assuntos
Matriz Extracelular , Cartilagem Hialina , Animais , Coelhos , Osso e Ossos , Osteogênese
7.
Adv Sci (Weinh) ; 10(26): e2303650, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37424038

RESUMO

In clinical practice, repairing osteochondral defects presents a challenge due to the varying biological properties of articular cartilages and subchondral bones. Thus, elucidating how spatial microenvironment-specific biomimetic scaffolds can be used to simultaneously regenerate osteochondral tissue is an important research topic. Herein, a novel bioinspired double-network hydrogel scaffold produced via 3D printing with tissue-specific decellularized extracellular matrix (dECM) and human adipose mesenchymal stem cell (MSC)-derived exosomes is described. The bionic hydrogel scaffolds promote rat bone marrow MSC attachment, spread, migration, proliferation, and chondrogenic and osteogenic differentiation in vitro, as determined based on the sustained release of bioactive exosomes. Furthermore, the 3D-printed microenvironment-specific heterogeneous bilayer scaffolds efficiently accelerate the simultaneous regeneration of cartilage and subchondral bone tissues in a rat preclinical model. In conclusion, 3D dECM-based microenvironment-specific biomimetics encapsulated with bioactive exosomes can serve as a novel cell-free recipe for stem cell therapy when treating injured or degenerative joints. This strategy provides a promising platform for complex zonal tissue regeneration whilst holding attractive clinical translation potential.


Assuntos
Exossomos , Tecidos Suporte , Ratos , Humanos , Animais , Osteogênese , Hidrogéis , Cartilagem , Regeneração Óssea , Impressão Tridimensional
9.
Liver Int ; 43(7): 1604-1613, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37249033

RESUMO

Our previous study found that double negative T cells (DNTs) could promote the NLRP3 activation through high expression of TNF-α, thereby leading to hepatic fibrosis progression. We focused on investigating the role and mechanism of DNTs in regulating the Th9 cells differentiation in liver fibrosis. In our results, among patients with liver fibrosis, the proportions of peripheral blood DNTs and Th9 cells were up-regulated and positively correlated. While promoting the progression of liver fibrosis in mice, DNTs could elevate the proportion of Th9 cells and activate the TNFR2-STAT5-NF-κB pathway. The use of IL-9 and TNF-α monoclonal antibodies (mAbs) inhibited the effect of DNTs and lowered the proportion of Th9 cells in tissues. In vitro experiments showed that DNTs could promote the Th9 cells differentiation of Naive T cells, while TNF-α mAbs could inhibit such effect of DNTs to lower the proportion of Th9 cells. We found that DNTs can activate TNFR2-STAT5-NF-κB pathway by secreting TNF-α, thereby promoting the Th9 Cells differentiation to facilitate the progression of liver fibrosis. There is interaction between DNTs and Th9 cells.


Assuntos
Receptores Tipo II do Fator de Necrose Tumoral , Linfócitos T Auxiliares-Indutores , Camundongos , Animais , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Fator de Transcrição STAT5/metabolismo , Fator de Necrose Tumoral alfa , NF-kappa B/metabolismo , Interleucina-9/metabolismo , Diferenciação Celular , Cirrose Hepática/metabolismo
10.
Aging (Albany NY) ; 15(10): 4524-4532, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37244283

RESUMO

This study aimed to investigate the role and mechanism of Anctin A, the Antrodia camphorata terpene component, in resisting liver injury. Network pharmacology analysis revealed that MAPK3 was the major action target of Antcin A. Furthermore, experimental research suggested that Antcin A suppressed mouse liver injury, reduced the inflammatory factor levels, and enhanced the anti-oxidative capacity. Meanwhile, it suppressed the expression of MAPK3 and the downstream NF-κB signal, while it did not significantly affect the expression of MAPK1. Based on network pharmacology method, this study discovers that the anti-liver injury effect of Antcin A is mainly related to MAPK3, and that Antcin A can suppress the activation of MAPK3 and its downstream NF-κB to inhibit mouse ALI.


Assuntos
Polyporales , Triterpenos , Camundongos , Animais , NF-kappa B/metabolismo , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Inflamação/tratamento farmacológico
11.
Int Immunopharmacol ; 119: 110179, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37099941

RESUMO

AIM: This work aimed to investigate the mechanism by which the environmental poison imidacloprid (IMI) induced liver injury. METHODS: First of all, IMI at the ED50 = 100 µM was added to treat mouse liver Kupffer cells, thereafter, the occurrence of pyroptosis was detected by flow cytometry (FCM), transmission electron microscope (TEM), immunofluorescence staining, enzyme-linked immunosorbent assay (ELISA), RT-QPCT and Western-Blot (WB) assay. Furthermore, P2X7 expression was knocked out in Kupffer cells, and cells were treated with the P2X7 inhibitor, so as to observe the pyroptosis level induced by IMI after P2X7 suppression. In animal experiments, IMI was used to induce mouse liver injury, then the P2X7 inhibitor and pyroptosis inhibitor were added to treat the mice, respectively, so as to observe the effect on liver injury. RESULTS: IMI induced Kupffer cell pyroptosis, P2X7 knockout or P2X7 inhibitor treatment suppressed the effect of IMI and reduced the pyroptosis level. In animal experiments, the application of both P2X7 inhibitor and pyroptosis inhibitor decreased the cell injury level. CONCLUSION: IMI induces Kupffer cell pyroptosis via P2X7 and induce liver injury, and inhibiting the occurrence of pyroptosis can suppress the hepatotoxicity of IMI.


Assuntos
Células de Kupffer , Piroptose , Animais , Camundongos , Células de Kupffer/metabolismo , Fígado , Neonicotinoides/metabolismo , Neonicotinoides/farmacologia
12.
Ecotoxicol Environ Saf ; 257: 114938, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37099958

RESUMO

AIM: We investigate the mechanism whereby chlorpyrifos (CHI), an environmental toxin, causes liver injury by inducing ferroptosis in hepatocytes. METHODS: The toxic dose (LD50 = 50 µM) of CHI for inducing AML12 injury in normal mouse hepatocytes was determined, and the ferroptosis-related indices were measured, including the levels of SOD, MDA and GSH-Px, as well as the cellular content of iron ions. JC-1 and DCFH-DA assays were employed to detect the mtROS levels, the levels of mitochondrial proteins (GSDMD, NT-GSDMD), as well as the cellular levels of ferroptosis-related proteins (P53, GPX4, MDM2, SLC7A11). We knocked out the GSDMD and P53 in AML12 and observed the CHI-induced ferroptosis of ALM12 after applying YGC063, an ROS inhibitor. In animal experiments, we explored the effect of CHI on liver injury by using conditional GSDMD-knockout mice (C57BL/6 N-GSDMDem1(flox)Cya) and ferroptosis inhibitor Fer-1. Small molecule-protein docking and Pull-down assay were employed to verify the association between CHI and GSDMD. RESULTS: We found that CHI could induce ferroptosis of AML12. CHI promoted the cleavage of GSDMD, leading to upregulation of mitochondrial NT-GSDMD expression, as well as ROS levels. P53 activation promoted the ferroptosis. Knock out of GSDMD and P53 could inhibit the CHI-induced ferroptosis, and YGC063 could also inhibit ferroptosis. In mice experiments, GSDMD knockout or Fer-1 intervention could significantly inhibit the CHI-induced liver injury. CHI promoted the cleavage of GSDMD by binding to its SER234 site. CONCLUSION: CHI can bind to GSDMD to promote its cleavage, while NT-GSDMD can open mitochondrial membrane to promote the mtROS release. Cytoplasmic upregulation of ROS levels can facilitate the P53-mediated ferroptosis. GSDMD-mtROS is the primary mechanism whereby CHI induces ferroptosis in hepatocytes.


Assuntos
Clorpirifos , Ferroptose , Animais , Camundongos , Camundongos Endogâmicos C57BL , Clorpirifos/toxicidade , Proteína Supressora de Tumor p53/genética , Espécies Reativas de Oxigênio , Substâncias Perigosas , Ferro , Camundongos Knockout , Fígado
13.
Int Immunopharmacol ; 119: 110164, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37060810

RESUMO

This work aimed to investigate the role of transcription factor TFAP4-OX40 in promoting the differentiation of double-negative T cells (DNTs). Through prediction and experimental analysis, it was discovered that TFAP4 was the transcription factor of OX40. Therefore, OX40 neutralizing antibody and TFAP4 overexpression transfection were adopted to investigate the role of TFAP4-OX40 in DNTs differentiation, and the effect of differentiated DNTs on hepatic stellate cell (HSC) activation. Moreover, the impact of TFAP4 on liver fibrosis and DNTs in liver tissue was explored using mice with myeloid specific TFAP4 knockout by TFAP4 neutralizing antibody treatment. TFAP4 is the transcription regulatory factor for OX40, which promoted OX40 transcription expression to accelerate DNTs differentiation. Treatment with OX40 neutralizing antibody suppressed DNTs differentiation, while TFAP4 overexpression promoted DNTs differentiation. DNTs produced from the TFAP4 induced differentiation promoted HSC activation. Myeloid specific TFAP4 knockout delayed the progression of liver fibrosis and decreased DNTs in tissue, while treatment with TFAP4 neutralizing antibody suppressed liver fibrosis and DNTs in liver tissue. According to our results, TFAP4 is the transcription factor of OX40, which promotes DNTs differentiation via the OX40 signal, thus promoting the progression of liver fibrosis.


Assuntos
Cirrose Hepática , Fatores de Transcrição , Camundongos , Animais , Cirrose Hepática/metabolismo , Fatores de Transcrição/metabolismo , Diferenciação Celular , Anticorpos Neutralizantes/metabolismo , Células Estreladas do Fígado/metabolismo
14.
Cartilage ; 14(1): 106-118, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36444115

RESUMO

OBJECTIVE: To compare the severity of cartilage degeneration after meniscal tears between juvenile and adult rabbits. DESIGN: This study included 20 juvenile rabbits (2 weeks after birth) and 20 adult rabbits (6 months after birth). Meniscal tears were prepared in the anterior horn of medial menisci of right knees. Rabbits were sacrificed at 1, 3, 6, and 12 weeks postoperatively. Cartilage degenerations in the medial femoral condyle and medial tibial plateau were evaluated macroscopically and histologically. The semiquantitative assessment of cartilage degeneration was graded by macroscopic Outerbridge scoring system and histological Osteoarthritis Research Society International (OARSI) scoring system. RESULTS: In juvenile rabbits, the morphologically intact cartilage and normal extracellular matrix architecture were observed at the first week postoperatively. Mild uneven cartilage surface and toluidine blue depletion in the medial femoral condyle were observed on histological assessment at 3 weeks postoperatively. The worsened cartilage deterioration demonstrating chondral fibrillation, prominent cell death, and glycosaminoglycan (GAG) release was observed at 6 and 12 weeks postoperatively. In adult rabbits, only mild cartilage degeneration was observed in the medial femoral condyle at 12 weeks postoperatively. The outcomes of Outerbridge and OARSI scores were consistent with the aforementioned findings in juvenile and adult rabbits. CONCLUSIONS: Our study validated that earlier and more severe cartilage degenerations were observed in juvenile rabbits after meniscal tears compared with adult rabbits. Moreover, the post-tear cartilage degeneration demonstrated regional specificity corresponded to the tear position. However, caution is warranted when extrapolating results of animal models to humans.


Assuntos
Doenças das Cartilagens , Traumatismos do Joelho , Osteoartrite , Adulto , Humanos , Animais , Coelhos , Articulação do Joelho/patologia , Doenças das Cartilagens/patologia , Traumatismos do Joelho/cirurgia , Meniscos Tibiais/cirurgia , Meniscos Tibiais/patologia , Tíbia/patologia , Osteoartrite/patologia
15.
Aging (Albany NY) ; 14(23): 9632-9646, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36470669

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is a major human health concern. Increasing evidence has demonstrated that ubiquitin ligase E4B (UBE4B) may be involved in the occurrence and development of various human cancers and may affect prognosis. However, the specific role and mechanism of UBE4B in HCC is unclear. METHODS: A pan-cancer analysis of UBE4B expression, clinicopathological features, and prognosis was performed using bioinformatics techniques. Subsequently, the expression, prognosis, and correlation of UBE4B and its upstream miRNAs and lncRNAs were analyzed. We investigated the relationship between UBE4B expression and immune cell infiltration, immunomodulatory factors, and chemokines in HCC. The expression levels of UBE4B and its upstream lncRNAs (FGD5-AS1, LINC00858, and SNHG16) and miRNAs (hsa-miR-22-3p) were evaluated in HCC cell lines using qRT-PCR. RESULTS: UBE4B expression increased in HCC and was correlated with a poor survival rate in patients with HCC. A ceRNA network was established to identify the UBE4B-hsa-miR-22-3p-FGD5-AS1/LINC00858/SNHG16 regulatory axis in HCC. UBE4B expression was significantly associated with immune cell infiltration, immunomodulators, chemokines, and their receptors in HCC. The mRNA expression of FGD5-AS1, LINC00858, SNHG16, and UBE4B was higher in the HCC cell lines (7721 and HepG2) than in the normal hepatocyte line (LO2), and the expression of hsa-miR-22-3p mRNA showed a decreasing trend. CONCLUSIONS: Our findings showed that upregulation of UBE4B was associated with poor prognosis and tumor immune infiltration in HCC. These findings will aid in understanding the relevant functions of UBE4B and provide new strategies for drug development and exploration of prognosis-related biomarkers.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , RNA Longo não Codificante , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Linhagem Celular Tumoral , MicroRNAs/metabolismo , Prognóstico , Regulação Neoplásica da Expressão Gênica , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
16.
Nat Commun ; 13(1): 7139, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36414669

RESUMO

Emerging evidence suggests that osteoarthritis is associated with high cholesterol levels in some osteoarthritis patients. However, the specific mechanism under this metabolic osteoarthritis phenotype remains unclear. We find that cholesterol metabolism-related gene, LRP3 (low-density lipoprotein receptor-related protein 3) is significantly reduced in high-cholesterol diet mouse's cartilage. By using Lrp3-/- mice in vivo and LRP3 lentiviral-transduced chondrocytes in vitro, we identify that LRP3 positively regulate chondrocyte extracellular matrix metabolism, and its deficiency aggravate the degeneration of cartilage. Regardless of diet, LRP3 overexpression in cartilage attenuate anterior cruciate ligament transection induced osteoarthritis progression in rats and Lrp3 knockout-induced osteoarthritis progression in mice. LRP3 knockdown upregulate syndecan-4 by activating the Ras signaling pathway. We identify syndecan-4 as a downstream molecular target of LRP3 in osteoarthritis pathogenesis. These findings suggest that cholesterol-LRP3- syndecan-4 axis plays critical roles in osteoarthritis development, and LRP3 gene therapy may provide a therapeutic regimen for osteoarthritis treatment.


Assuntos
Proteínas Relacionadas a Receptor de LDL , Osteoartrite , Sindecana-4 , Animais , Camundongos , Ratos , Cartilagem/metabolismo , Colesterol/metabolismo , Regulação para Baixo , Osteoartrite/metabolismo , Sindecana-4/genética , Sindecana-4/metabolismo , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas Relacionadas a Receptor de LDL/metabolismo
17.
Aging (Albany NY) ; 14(22): 9020-9036, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36384889

RESUMO

The important role of pyroptosis in tumor progression has been well characterized in recent years. However, little is known about the impact of tumor pyroptosis characteristics on patient prognosis and tumor microenvironment (TME) as well as efficacy of immunotherapy. In this study, we successfully classified colon cancer samples into three pyroptosis characterizations with different prognosis and TME cell infiltration patterns based on the expression of pyroptosis-related genes. Cluster 2, with the characterizations of immunosuppression, was classified as immune-desert cell infiltration patterns. Cluster 3, with the patterns of immune-inflamed cell infiltration, had the feature of an activated innate and adaptive immunity and significant prolonged survival. The activation of stromal pathways including EMT, angiogenesis and TGF-ß in cluster 1 may mediate the impaired immune penetration of this cluster, which was classified as immune-excluded cell infiltration patterns. Our results demonstrated the PyroSig signature was a robust and independent biomarker for predicting patient prognosis. Patients with low PyroSig signature was confirmed to be correlated with treatment advantages and significant prolonged survival in two anti-checkpoint immunotherapy cohorts. This study identified three pyroptosis-related subtypes with distinct molecular features, clinical and microenvironment cell infiltration patterns in colon cancer, which could promote individualized immunotherapy for colon cancer.


Assuntos
Neoplasias do Colo , Microambiente Tumoral , Humanos , Microambiente Tumoral/genética , Piroptose/genética , Neoplasias do Colo/genética , Imunoterapia , Terapia de Imunossupressão , Prognóstico
18.
Biochem Biophys Res Commun ; 635: 77-83, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36257195

RESUMO

Articular cartilage defects remain the most common and challenging joint disease. Cartilage lacks the self-healing capacity after injury due to its avascularity. Recently, stem cell-based therapy has been applied for cartilage regeneration. However, the critical target for stem cells during chondrogenesis remains unclear. We first reported that LDL receptor-related protein 3 (LRP3) expression was markedly increased during chondrogenesis in stem cells. Furthermore, LRP3 was an effective chondrogenic stimulator, as confirmed by knockdown and overexpression experiments and RNA sequencing. In addition, inhibition of LRP3 suppressed proliferation and induced apoptosis. Therefore, our study first defined a new chondrogenic stimulator, LRP3, with detailed clarification, which provided a novel target for stem cell-based cartilage regeneration.


Assuntos
Cartilagem Articular , Células-Tronco Mesenquimais , Condrogênese/genética , Células-Tronco Mesenquimais/metabolismo , Diferenciação Celular , Células-Tronco , Cartilagem Articular/metabolismo , Apoptose , Proliferação de Células , Receptores de LDL/metabolismo
19.
Colloids Surf B Biointerfaces ; 219: 112842, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36137335

RESUMO

Wound healing is a complex physiological process involving four coordinated stages, including hemostasis, anti-inflammatory, repair, and epithelial formation. Herein, multifunctional core-shell alkylated chitosan/calcium alginate microfibers are fabricated as a novel strategy for promoting wound healing by contributing to each four stages in the entire healing process. Taking advantages of the microfluidic technology, the core-shell microfibers can be generated in a continuous and convenient manner through the interfacial assembly between alkylated chitosan and Na-alginate, as well as the simultaneous crosslink between calcium and the alginate. Generated microfibers possess unique internal structure which can effectively promote the absorption of blood and exudate produced during trauma. Moreover, the dodecyl carbon chain and abundant amino groups of alkylated chitosan provide microfibers with excellent hemostatic and antibacterial properties, which can repair acute hemorrhage and destroy bacteria rapidly. Further, the chronic wound healing process of a skin injury model can be significantly promoted by applying the fabricated microfibers. With these sequential functions to guide the whole-stage wound healing, the presented multifunctional core-shell microfibers create a versatile and robust paradigm for comprehensive wound treatment.

20.
Front Immunol ; 13: 949490, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36177041

RESUMO

Fecal microbiome transplantation (FMT) from healthy donors is one of the techniques for restoration of the dysbiotic gut, which is increasingly being used to treat various diseases. Notably, mounting evidence in recent years revealed that FMT has made a breakthrough in the oncology treatment area, especially by improving immunotherapy efficacy to achieve antitumor effects. However, the mechanism of FMT in enhancing antitumor effects of immune checkpoint blockers (ICBs) has not yet been fully elucidated. This review systematically summarizes the role of microbes and their metabolites in the regulation of tumor immunity. We highlight the mechanism of action of FMT in the treatment of refractory tumors as well as in improving the efficacy of immunotherapy. Furthermore, we summarize ongoing clinical trials combining FMT with immunotherapy and further focus on refined protocols for the practice of FMT in cancer treatment, which could guide future directions and priorities of FMT scientific development.


Assuntos
Microbioma Gastrointestinal , Microbiota , Neoplasias , Disbiose/terapia , Transplante de Microbiota Fecal/métodos , Microbioma Gastrointestinal/fisiologia , Humanos , Inibidores de Checkpoint Imunológico , Microbiota/fisiologia , Neoplasias/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...